Other functions

Integrating wavelet functions

pywt.integrate_wavelet(wavelet, precision=8)

Integrate psi wavelet function from -Inf to x using the rectangle integration method.

Parameters:

wavelet : Wavelet instance or str

Wavelet to integrate. If a string, should be the name of a wavelet.

precision : int, optional

Precision that will be used for wavelet function approximation computed with the wavefun(level=precision) Wavelet’s method (default: 8).

Returns:

[int_psi, x] : :

for orthogonal wavelets

[int_psi_d, int_psi_r, x] : :

for other wavelets

Examples

>>> from pywt import Wavelet, integrate_wavelet
>>> wavelet1 = Wavelet('db2')
>>> [int_psi, x] = integrate_wavelet(wavelet1, precision=5)
>>> wavelet2 = Wavelet('bior1.3')
>>> [int_psi_d, int_psi_r, x] = integrate_wavelet(wavelet2, precision=5)

The result of the call depends on the wavelet argument:

  • for orthogonal and continuous wavelets - an integral of the wavelet function specified on an x-grid:

    [int_psi, x_grid] = integrate_wavelet(wavelet, precision)
    
  • for other wavelets - integrals of decomposition and reconstruction wavelet functions and a corresponding x-grid:

    [int_psi_d, int_psi_r, x_grid] = integrate_wavelet(wavelet, precision)
    

Central frequency of psi wavelet function

pywt.central_frequency(wavelet, precision=8)

Computes the central frequency of the psi wavelet function.

Parameters:

wavelet : Wavelet instance, str or tuple

Wavelet to integrate. If a string, should be the name of a wavelet.

precision : int, optional

Precision that will be used for wavelet function approximation computed with the wavefun(level=precision) Wavelet’s method (default: 8).

Returns:

scalar :

pywt.scale2frequency(wavelet, scale, precision=8)
Parameters:

wavelet : Wavelet instance or str

Wavelet to integrate. If a string, should be the name of a wavelet.

scale : scalar

precision : int, optional

Precision that will be used for wavelet function approximation computed with wavelet.wavefun(level=precision). Default is 8.

Returns:

freq : scalar

Quadrature Mirror Filter

pywt.qmf(filter)

Returns the Quadrature Mirror Filter(QMF).

The magnitude response of QMF is mirror image about pi/2 of that of the input filter.

Parameters:

filter : array_like

Input filter for which QMF needs to be computed.

Returns:

qm_filter : ndarray

Quadrature mirror of the input filter.

Orthogonal Filter Banks

pywt.orthogonal_filter_bank(scaling_filter)

Returns the orthogonal filter bank.

The orthogonal filter bank consists of the HPFs and LPFs at decomposition and reconstruction stage for the input scaling filter.

Parameters:

scaling_filter : array_like

Input scaling filter (father wavelet).

Returns:

orth_filt_bank : tuple of 4 ndarrays

The orthogonal filter bank of the input scaling filter in the order : 1] Decomposition LPF 2] Decomposition HPF 3] Reconstruction LPF 4] Reconstruction HPF

Example Datasets

The following example datasets are available in the module pywt.data:

name description
ecg ECG waveform (1024 samples)
aero grayscale image (512x512)
ascent grayscale image (512x512)
camera grayscale image (512x512)

Each can be loaded via a function of the same name.

Example: .. sourcecode:: python

>>> import pywt
>>> camera = pywt.data.camera()

Table Of Contents

Previous topic

Thresholding functions

Next topic

Usage examples

Quick links

Edit this document

The source code of this file is hosted on GitHub. Everyone can update and fix errors in this document with few clicks - no downloads needed.